Reversible optical data storage on poly(ethylene terephthalate)
نویسندگان
چکیده
منابع مشابه
Immobilization of silver nanoparticles on polyethylene terephthalate
Two different procedures of grafting with silver nanoparticles (AgNP) of polyethylene terephthalate (PET), activated by plasma treatment, are studied. In the first procedure, the PET foil was grafted with biphenyl-4,4'-dithiol and subsequently with silver nanoparticles. In the second one, the PET foil was grafted with silver nanoparticles previously coated with the same dithiol. X-ray photoelec...
متن کاملMicromechanical modelling of reversible and irreversible thermo-mechanical deformation of oriented polyethylene terephthalate
In this article, the reversible and irreversible thermo-mechanical time-dependent deformation of oriented polyethylene terephthalate film is studied. A mean-field model is used to simulate these effects along with the long-term creep behaviour, taking into account the underlying material microstructure and differences in constitutive behaviour of the phases. The material is modelled as an aggre...
متن کاملConfinement-induced vitrification in polyethylene terephthalate
Dynamic mechanical thermal analysis performed on cold-drawn polyethylene terephthalate PET , cold crystallized annealed in the temperature interval 100–140 °C, reveals the presence of marginally glassy domains above the annealing temperature Ta. This suggests that the thermodynamic force driving crystallization causes the structural arrest of some noncrystalline domains. The latter thus need a ...
متن کاملPolyethylene Terephthalate May Yield Endocrine Disruptors
BACKGROUND Recent reports suggest that endocrine disruptors may leach into the contents of bottles made from polyethylene terephthalate (PET). PET is the main ingredient in most clear plastic containers used for beverages and condiments worldwide and has previously been generally assumed not to be a source of endocrine disruptors. OBJECTIVE I begin by considering evidence that bottles made fr...
متن کاملProtein adsorption on various plasma-treated polyethylene terephthalate substrates.
Protein adhesion and cell response to plasma-treated polymer surfaces were studied. The polymer polyethylene terephthalate (PET) was treated in either an oxygen plasma to make the surface hydrophilic, or a tetrafluoromethane CF(4) plasma to make the surface hydrophobic. The plasma source was radiofrequency (RF) discharge. The adsorption of albumin and other proteins from a cell-culture medium o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Polymer Engineering & Science
سال: 1997
ISSN: 0032-3888,1548-2634
DOI: 10.1002/pen.11654